2019 충남대학교 소재화학연구소 국제학술대회 



2019 International Symposium on Materials Chemistry










November 7th (Thursday) 2019






Basic Science Building (W11- 2), Room 110, 

Chungnam National University, Daejeon, Korea







주관 : 충남대학교 소재화학연구소

Research Institute of Materials Chemistry, 

Chungnam National University


후원 : 충남대학교 화학물질특성분석 핵심연구지원센터

CNU Chemistry Core Facility



< Program >


13:30–14:00  Registration


14:00–14:10  Opening Remarks : 

Prof. Chanyong Lee (Dean, CNS )

Prof. Youngku Sohn (Director, RIMC, CNU) 



Session I


Chairperson : Prof. Kyung- sun Son

(Chungnam National University, Korea)


14:10- 14:40   Prof. Jaebeom Lee 

(Chungnam National University, Korea)

“Magnetoplasmonics: Nanoscale Control of Optical and Plasmonic Field”



14:40- 15:10   Prof. Van Dong Nguyen

(Vietnam National University- Ho Chi Minh City, Vietnam)

“Speciation analysis of arsenic and mercury in 

various samples”



15:10- 15:40  Prof. Lee Wah LIM (Gifu University, Japan)

“Microwave- assisted Preparation of Monolithic 

Stationary Phases for Capillary Liquid 

Chromatography”



15:40 -  15:50   Discussion



15:50 -  16:10   Coffee Break




Session II


Chairperson : Prof. Jungseok Heo

(Chungnam National University, Korea)


16:10- 16:40   Prof. Pavel N. Nesterenko 

(Lomonosov Moscow State University, Russian Federation)

“3D printing in analytical chemistry: current state and future”


16:40- 17:10   Prof. Tae- Young Kim (GIST, Korea)

“Deuterium Oxide Labeling for Global Omics Relative 

Quantification & Its Application to Lipidomics”


17:10- 17:40   Prof. Dong- Ku Kang 

(Incheon National University, Korea)

“Nano- biosensors and biochip technologies for 

rapid and sensitive biomarker detection in complex 

biological samples”



17:40 -  17:50   Discussion



17:50 -  18:00   Photo Time



18:00 – 20:00   Dinner











Magnetoplasmonics: 

Nanoscale Control of Optical and Plasmonic Field



Jaebeom Lee 



Department of Chemistry, Chungnam National University

99 Daehak- ro, Yuseong- gu, Daejeon 34134, Korea

E- mail: nanoleelab@cnu.com




Astrophysical phenomenon mimetic helical magnetic field (hB)- assisted self- assembly is a herein reported method used to build helical superstructures that display chiroptical properties. As a building block, magnetoplasmonic (MagPlas) Ag@Fe3O4 core- shell nanoparticles were used to guide plasmonic Ag nanoparticles onto a helical magnetic flux. The chirality of the assembled helical structures and tailored circular dichroism were successfully tuned, and the handedness of the assembled structures was dynamically switched by the hB at the millisecond level, which is at least 300,000- fold faster than other template- assisted methods. The peak position of circular dichroism can be reconfigured through altering the plasmonic resonance or coupling by controlling the size of the Ag core and magnetic flux density. The hB- induced chirality modulation represents a novel method to control the polarization state of light at the nexus of plasmonics, magnetic self- assembly, colloidal science, liquid crystals, and chirality. It represents a significant breakthrough for chiral assemblies of magnetoplasmonic nanomaterials, enabling further practical applications in optical devices.





Speciation analysis of arsenic and mercury in 

various samples



Van Dong Nguyen



Department of Analytical Chemistry, Hochiminh City University of Science, Vietnam National University- Ho Chi Minh City, Vietnam

E- mail: winternguyenvan@gmail.com




The presentation considers analytical methods for speciation of arsenic for agricultural activities (paddy soil and rice samples) and mercury for environment studies (water, sediments and biological tissue samples). The research outcomes provide useful information that may help to improve the quality of rice with lower arsenic concentration and to control the pollution of mercury in environment in Vietnam.














Microwave- assisted Preparation of 

Monolithic Stationary Phases for 

Capillary Liquid Chromatography



Lee Wah LIM 



Department of Chemistry and Biomolecular Science, Faculty of Engineering, 

Gifu University

E- mail: lim@gifu- u.ac.jp




Monolithic columns, which consist of μm- sized skeletons and through- pores, could offer high separation efficiency with ultra- low flow resistance, and they have attracted much attention since their introduction in the early 1990s [1- 2]. Generally, monolithic columns can be divided into two types, i.e. silica-  and organic polymer- based. The silica monolith has some advantages over the polymer monolith such as good mechanical strength, well- controlled pore structure and high column efficiency especially for small molecules. On the other hand, polymer monolith is robust over a wide range of pH and it is easy to prepare. In recent years, hybrid types of organic- inorganic materials, which seem to have combined advantages of these two, are also being studied greatly.


In this study, we focused our attention on the rapid fabrication of both silica- and organic polymer- based monolithic capillary columns using a microwave device and the experimental conditions were optimized. Polymer monolith is normally prepared via thermal-  or photo- polymerization; photo- polymerization is more popular recently because it has some advantages over the traditional thermal- polymerization, while microwave irradiation had been reported as an attractive alternative in preparing polystyrene- based monolith and it 



could achieve fast and localized polymerization as in photo- polymerization [3].


Monolithic silica-  and organic polymer- based capillary columns (0.32 mm I.D.) were fabricated using a MWO- 1000S (Wave Magic) microwave device, which has a controllable output range from 50 to 500 W, and a controllable temperature range between room temperature + 10- 250°C. The reaction solution was filled into fused- silica capillary tubing and the column was then irradiated at different time under various temperature and output control of the microwave device. The morphology of the monoliths was observed with a scanning electron microscope (SEM) and was compared to those monoliths that were fabricated under normal thermal conditions. The results showed that the degree of output of the microwave device had direct influence on the morphology as well as size of the skeleton backbone of the monoliths. In addition, when a methacrylate- based polymer was used, the capillary column could be fabricated within less than 15 min, which is ca. 100- fold faster than the conventional thermal polymerization in a water- bath, and the theoretical plate number, i.e.N is calculated to be approximately 50,000 plates/m for a normal liquid chromatographic separation.


In conclusion, the use of microwave- assisted synthesis has been proven to be effective in certain organic reactions; however, the results are somewhat not reproducible especially for the silica- based materials. In addition, the “real” mechanism behind it is still remain inexplicable. Nevertheless, microwave- assisted synthesis is an attractive and yet challenging alternative as far as the rapid fabrication of capillary monolithic columns is concerned without compromising their separation efficiency. Further studies involving one- pot synthesis of ion- exchange monolithic polymer- based columns are still undergoing.









Keywords: microwave- assisted synthesis, monolithic capillary column, rapid preparation



References

[1] Hjertèn, S., Liao, J.- L., Zhang, R. J. Chromatogr. A1989, 473, 273- 275.

[2] Svec, F., Frechet, J. M. J. Anal. Chem. 1992, 64, 820- 822.

[3] Zhang, Y.- P., Ye, X.- W., Tian, M.- K., Qu, L.- B., Choi, S.- H., Gopalan, A. I., Lee, K.- P. J. Chromatogr. A2008, 1188, 43- 49.





























3D printing in analytical chemistry: 

current state and future



Pavel N. Nesterenko 



Chemistry Department, M.V. Lomonosov Moscow State University, 119991, Moscow, Lenin Hills, 1
E- mail: p.nesterenko@phys.chem.msu.ru




In the last decade 3D printing as a part of additive technologies has got a remarkable attention in chemistry due to outstanding simplicity of making very complex functional objects [1]. The use of 3D printing in analytical instrumentation is associated with making prototypes of new devices and manufacturing parts having complex internal spatial configuration and it has been proved as exceptionally effective. The examples of 3D printed devices include flow cells for detectors, mixers and reactors, passive sampling devices, cartridges for solid phase extraction (SPE), plates for thin layer chromatography (TLC), compact chromatographic columns for high performance liquid chromatography (HPLC), various Minituarised Analytical Devices (MADe) and other devices and functional parts [2- 3]. 

Additional possibilities for the widespread introduction of 3D printing technologies are associated with the intensive development of new materials, which can be printed, including optically transparent, current-  and thermo- conductive materials and various composite materials with required properties, as well as extending possibilities for simultaneous printing of several materials to produce multifunctional devices [2- 3].

This presentation will focus on possible advantages offered by 3D printing for production of new advanced analytical devices, the current state of 3D printing and future prospectives.





References 

1. Gupta V., Nesterenko P.N., Paull B. 3D Printing in Chemical Sciences: Applications across Chemistry. Cambridge: RSC, 2019. 246с. 

2. Kalsoom U., Nesterenko P., Paull B. RSC Advances, 2016, 6, 60355. 

3. Kalsoom U., Nesterenko P., Paull B. TRAC- Trends Anal. Chem., 2018, 105, 492.





























Deuterium Oxide Labeling for Global Omics Relative 

Quantification & Its Application to Lipidomics



Tae- Young Kim 



School of Earth Sciences and Environmental Engineering, 

Gwangju Institute of Science and Technology

E- mail: kimtaeyoung@gist.ac.kr




In most quantitative mass spectrometry (MS), complete labeling of target analytes with heavy isotopes is designed for simple distinction of isotope- labeled compounds from unlabeled ones in a mass spectrum. However, achieving complete isotope labeling is a cumbersome practice mainly due to high cost and long time. An alternative method to introduce an isotope to biomolecules is indirect deuterium labeling via deuterium oxide (D2O) administration, which results in strikingly different patterns of mass spectra because of partial isotope enrichment. We have developed novel analytical platforms for relative quantification for biomolecules on a global scale using metabolic partial D2O labeling, named “Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ).”

To assess the precision and robustness of DOLGOReQ, labeled and unlabeled lipids from HeLa cells were mixed in various ratios based on their cell numbers. Using in- house software developed for automated high- throughput data analysis of DOLGOReQ, the number of detectable mass isotopomers and the degree of deuterium labeling were exploited to filter out low quality quantification results. Quantification of an equimolar mixture of HeLa cell lipids exhibited high reproducibility and accuracy across multiple biological and technical replicates. Two orders of 



magnitude of effective dynamic range for reasonable relative quantification could be established with HeLa cells mixed from 10:1 to 1:10 ratios between labeled and unlabeled samples. The quantification precision of DOLGOReQ was also illustrated with lipids commonly detected in both positive and negative ion modes. Finally, quantification performance of DOLGOReQ was demonstrated in a biological sample by measuring the relative change in the lipidome of HeLa cells under normal and hypoxia conditions.
































Rapid Detection of Single Bacteria in Unprocessed Blood using Integrated Comprehensive Droplet Digital Detection



Dong- Ku Kang 



Department of Chemistry, Incheon National University

E- mail: dkkang@inu.ac.kr




Antimicrobial resistance is a growing health problem in the United States and worldwide. According to the Centers for Disease Control and Prevention (CDC), more than two million people are infected annually with antibiotic- resistant infections, with >23,000 deaths. Aggressive bacterial infections associated with antimicrobial resistance are often managed within intensive care units (ICUs) with high associated costs, which impose significant healthcare, economic and social burdens. Especially, extended spectrum beta- lactamase (ESBL)- producing Enterobacteriaceae is commonly found in K. pneumoniae and Escherichia coli are among the most prevalent antimicrobial resistant pathogens. ESBLs account for 10- 20% of serious E. coli infections and 20- 30% of Klebsiella infections reported nationally. However lack of rapid diagnostics results in either use of unnecessarily broad empiric antibiotics, or a delay of several days in administering the appropriate antibiotic(s). 

Rapid diagnostics are particularly needed for pathogens such as E. coli, which are common, virulent, and have acquired ESBLs1. Furthermore, diagnostic tests that can confirm the presence of ESBLs regardless of the species would be exceedingly valuable in directing early therapy and enabling better antimicrobial stewardship for those not infected with antibiotic resistant pathogens. Unfortunately, existing bacterial detection 



methods are limited in their inability to rapidly detect and identify pathogens that typically occur at low concentrations in blood (1 to 100 colony- forming unit (CFU)/mL) as is commonly found in adult BSIs. Conventional bacterial blood cultures coupled with susceptibility testing (automated methods or disk diffusion) require days to obtain a result. This lag in time to detect a patient with a culture positive BSI, identification of the isolate and establishing the antimicrobial susceptibility of the isolate contribute to the high mortality. 

Here, we will discuss about our strategy for monitoring beta- lactamase producing bacteria at single- cell sensitivity within a few hours by miniaturized droplet- based microfluidic system.



Keywords: Lab on a chip, Microdroplet, Microfluidics, Digital quantification



References

[1] L. Labanieh, T. Nguyen, W. Zhao, and D.- K. Kang, Micromachines, 6, 1469- 1482 (2015)

[2] D.- K. KANG et al., Analytical Chemistry, 87, 10770–10778 (2015)

[3] K. Zhang, D.- K. Kang, et al., Lab on a Chip, 15, 4217- 4226 (2015)

[4] D.- K. Kang et al., Nature Communications, 5, 5427 (2014)

[5] D.- K. Kang, et al., Trends in Analytical Chemistry, 58, 145–153 (2014)